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TECHNICAL MEMORANDUM x-361 

WIND-TUNi?EL INVESTIGATION OF THE STATIC AND 

DYl'WC-ROTARY STABILITY DERIVATIVES OF 

A FIAT-TOP WING-BODY MODEL AT MACH 

By Bedford A. Lampkin and Kenneth C. Endicott 

SUMMARY 

The r e s u l t s  o:f a wind-tunnel invest igat ion of t he  s t a t i c  and dynamic- 
ro ta ry  s t a b i l i t y  der ivat ives  f o r  a f l a t - t o p  wir?g-body model a r e  presented. 
The t e s t  w a s  conducted a t  Mach numbers of 2.5, 3.0, and 3.5, and a 
Reynolds number of 5 mill ion.  The angle-of-attack range w a s  approximately 
-16O t o  +12' a t  0' s ides l ip .  
the  angle-of-attack range at a constant 5' angle of s ides l ip  and within 
an angle-of-sideslip range of -10' t o  -1-6' a t  a constant angle of a t tack  
of 6'. 

Also, s t a t i c  data were obtained through 

The model consisted of an arrow w i n g  w i t h  t i p s  drooped along a l i n e  

A vent ra l  f i n  w a s  located a t  the  rear of 
incl ined 3' t o  the model plane of symmetry, and a 3/4-power ogive half  
body mounted beneath the  wing. 
the  half  body. 

It was found t h a t  the  model was d i rec t iona l ly  unstable a t  pos i t ive  
angles of a t tack  above 5 O ;  however, the  dynamic damping was s t ab i l i z ing  
about t he  three  body axes throughout t he  t e s t  range. With e i t h e r  elevon 
or rudder def lec t ion  there  were pronounced cross-coupling e f f e c t s  on the  
l a t e r a l  and direct , ional s t a b i l i t y  of t he  a i r c r a f t  which make proper roll 
control  d i f f i c u l t  t o  a t t a i n .  Final ly ,  elementary methods of estimating 
the  der ivat ives  were only moderately successful.  

jtTitle, Unclassified 
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INTRODUCTION 

Several ana ly t i ca l  and wind-tunnel s tudies  have considered the  
poss ib i l i t y  of obtaining high l i f t  t o  drag r a t i o s  on f l a t - top  configura- 
t i ons  as a result of bene f i c i a l  aerodynamic interference e f f ec t s  ( r e f s .  1, 
2, and 3 ) .  The model of t h i s  invest igat ion evolved from these s tudies .  

The problems of designing p r a c t i c a l  a i r c r a f t  f o r  f l i g h t  a t  hypersonic 
speeds a re  fu r the r  complicated because s t a b i l i t y  and control  must be 
maintained over la rge  speed ranges. 
i s  t o  supply data  for analyzing the  s t a b i l i t y  and control  of the  t e s t  
configuration. Also, an assessment i s  made of the  current methods of 
predict ing the  dynamic s t a b i l i t y  der ivat ives  by comparing estimated values 
with experimental r e s u l t s .  

The primary purpose of t h i s  report  

W i t h  the  m o d e l  m o u n t e d  on a six-component strain-gage balance, the  
l i f t ,  drag, pi tching 

During a second 
following aerodynamic coef f ic ien ts  were obtained: 
moment, s ide force,  yawing moment, and r o l l i n g  moment. 
phase of the  t e s t ,  t he  model was mounted on a dynamic balance and the  
following s t a b i l i t y  der ivat ives  were obtained: pitching moment due t o  
angle of a t tack ,  damping i n  pi tch,  yawing moment due t o  angle of side- 
s l i p ,  damping i n  yaw, r o l l i n g  moment due t o  yawing veloci ty ,  damping i n  
roll, and y a w i n g  moment due t o  r o l l i n g  veloci ty .  

The aerodynamic coef f ic ien ts  and s t a b i l i t y  der ivat ives  defined i n  
t h i s  sect ion a re  or iented about a body system of axes as shown i n  
f igure  1. The angular dimensions a re  degrees and radians f o r  t he  s t a t i c  
and dynamic der ivat ives ,  respectively.  The loca t ion  of the  model moment 
center was a t  76 percent of the  body length aft  of the  nose which corre- 
sponds t o  55.4 percent of the  wing mean aerodynamic chord. 

l i f t  l i f t  coeff ic ient ,  
1; cl pv2s 
c 

drag coef f ic ien t ,  1 pv2s 

i tch ing  moment pitching-moment coef f ic ien t ,  p 
1 

side force 

5 pV2SE 

side-force coef f ic ien t ,  $ pv2s 
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Cn 

C 2  

a w i n g  moment yawing-moment coef f ic ien t ,  Y 
1 pv2sb 

rolling moment 
1 rolling-moment coef f ic ien t ,  
Fi pV2s-b 

ac, 
CnP 

M Mach number 

S wing area  

V veloc it y 

X,Y,Z system of body axes (see f i g .  1) 

b wing span 

- 
C wing mean aerodynamic chord 
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ro t a t iona l  ve loc i ty  about X axis ,  radians/sec 

ro t a t iona l  ve loc i ty  about Y ax is ,  radians/sec 

r o t a t i o n a l  ve loc i ty  about Z axis, radians/sec 

f r ac t ion  of fuselage length (see f i g .  2 )  

angle of a t tack ,  radians except where noted 

angle of s ides l ip ,  radians except where noted 

def lect ion angle, deg 

density 

increment 

Subscripts 

e both elevons 

eL l e f t  elevon 

eR r i g h t  elevon 

R rudder 

MODEL 

The model of t h i s  invest igat ion consisted of a notched arrow wing 
with 4 5 O  drooped t i p s  and a 3/4-power ogive half body (40 inches long 
with a 5-inch cy l ind r i ca l  extension) mounted beneath the  w i n g .  
f i n  and rudder were attached t o  the  a f t  underside of the  fuselage.  
model components were aluminum. 
f igure  2, and photographs of t he  model i n  the  wind-tunnel t es t  sect ion 
a re  shown i n  f igure  3. 

A vent ra l  
All 

Dimensions of t he  model are given i n  
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Tests were conducted i n  the  8- by 7-foot supersonic t e s t  sect ion of 
the Ames Unitary Plan Wind Tunnel. 
uous var ia t ion  of Mach number from 2.5 t o  3.5 and of stagnation pressures 
from 2 t o  28 ps ia .  
be found i n  reference 4. 

This wind tunnel i s  capable of contin- 

A more de ta i led  descr ipt ion of the  wind tunnel may 

The s t a t i c  force data  were measured on a six-component strain-gage 
balance. 
d i g i t a l  computer t o  obtain the  coef f ic ien ts .  

The s igna l  output from the  balance w a s  processed through a 

During a second phase of the  t e s t  the  model was mounted successively 
on two dynamic balances. 
s ingle  ax i s  so t h a t  one balance could produce a r o l l i n g  osc i l l a t ion  while 
the  other,  depending on i t s  ax i s  or ientat ion,  could produce e i the r  a 
yawing or pitching osc i l l a t ion .  
by an e lec t ronic  feedback system u t i l i z i n g  s t r a i n  gages mounted i n  the  
balance. The strain-gage output s ignals  were d ig i t i zed  and with the  
period of o sc i l l a t ion  were processed through a d i g i t a l  computer t o  produce 
the  dynamic s t a b i l i t y  der ivat ives .  

These balances were f r e e  t o  o s c i l l a t e  about a 

Osci l la t ion amplitudes were controlled 

Further information on the  ro ta ry  der ivat ives  t e s t i n g  technique and 
the  associated equipment may be found i n  reference 5 .  

TESTS AND PROCEDURE 

Tests of the f l a t - top  configuration were conducted a t  Mach numbers 
of 2.5, 3.0, and 3.3 and at  a Reynolds number of 5 million based on the 
mean aerodynamic chord. 

S t a t i c  force data were obtained within the  range of angles of a t tack  
of -16O t o  +12O a t  constant angles of s ides l ip  of both 0' and 5', and 
within the  range of angles of s ides l ip  of -10' t o  +6O at a constant angle 
of a t tack  of 6O. Elevon e f f e c t s  were determined with both elevons at 
Oo, +209 and -20' and w i t h  the  l e f t  elevon only a t  these posi t ions.  The 
model was t e s t ed  with the  vent ra l  f i n  undeflected and def lected loo, and 
without the  vent ra l  f i n .  

Dynamic data  were obtained through an angle-of-attack range of -16' 
Yawing and r o l l i n g  osc i l l a t ions  t o  +12O and an angle of s ides l ip  of Oo. 

were conducted with the  elevons and the  vent ra l  f i n  undeflected. Addi- 
t i o n a l  t e s t s  were made without the  vent ra l  f i n  i n  place.  
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For the  pitching osc i l l a t ion  tests the  rudder remained undeflected 
and the  elevons were deflected e i the r  Oo, +loo, +20°, o r  -10' t o  reduce 
the model s t a t i c  pi tching moment a t  a given angle of a t tack as necessi- 
t a t ed  by the  t e s t ing  technique. 

The range of o sc i l l a t ion  amplitudes w a s  between 51' and k 2 O  at  
osc i l l a t ion  frequencies between 4 and 8 cycles per second. 
generally taken at  the  maximum osc i l l a t ion  amplitude obtainable and again 
at  an amplitude of approximately one half  t he  former. 
the  data  for the  two conditions was within the random sca t t e r .  

Data were 

The var ia t ion  of 

CORRECTIONS AND ACCURACY 

Pressures were measured a t  the base of the  model and applied t o  the 
s t a t i c  force data  as a base drag correct ion which replaced the  measured 
base pressures by free-stream s t a t i c  pressure.  

For the  dynamic balances, corrections t o  the  measured values of t he  
damping coef f ic ien ts  caused by mechanical damping of the  osc i l l a t ions  
were determined from wind-off measurements with the  tunnel evacuated t o  
a pressure of approximately 5 inches of mercury. 
were approximately 0 . O l 5  i n  der ivat ive units. 

The l a rges t  t a r e  values 

The accuracy of t he  s t a t i c  data  i s  l i s t e d  i n  the  following t ab le .  
The f igures  a re  based on the mechanical and e l e c t r i c a l  r epea tab i l i t y  of 
the  recording equipment. 

CL kO.001 Cn kO.0003 
k0.0003 
k0.20 

CD k0.0003 C l  
c, kO.0010 U 
cy kO.001 P kO.2O 

The precis ion of the  dynamic data i s  indicated on the  data  p l o t s  
by a comparison of the data  point value and the  nominal value f a i r ings  
of the p lo t s .  

RESULTS 

Table I i s  an index of the  r e s u l t s  of t he  wind-tunnel t e s t s  presented 
i n  the  f igures  

COIVIDENTIAL 
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DISCUSSION 

I n  the  discussion which follows, the  s t a t i c  force data of f igures  
4, 5 ,  9, and 10 are  mentioned only as they a f f e c t  t he  discussion of the  
s t a b i l i t y  der ivat ives .  
the  broken l i n e s  on the  appropriate f igures  and are based on methods 
which generally do not attempt t o  predict  aerodyna.mic interference e f fec ts .  

The predicted der ivat ive values axe indicated by 

S t a t i c  Longitudinal Character is t ics  

crpa S t a t i c  longi tudinal  s t ab i l i t y . -  I n  f igure  6 the  values of 
indicate  s t a t i c  s t a b i l i t y  i n  p i t ch  a t  angles of a t tack  more pos i t ive  
than approximately -5'. 
indicate  s t a t i c  i n s t a b i l i t y  i n  p i tch .  

A t  g rea te r  negative angles of a t tack ,  the  data  

Theoretical  values of Cm were not derived because of the  complex 
nature of t he  aerodynamic interference.  Instead, t he  broken-line curves 
of C i n  f igure 6 were obtained from s t a t i c  pitching-moment data w i t h  
6, = 8 and +20°. The agreement between the  two eqe r imen ta l ly  obtained 
der ivat ives  i s  good. It i s  of i n t e r e s t  t o  note the  spread i n  the  values 
of Cma at about -2' angle of a t tack,  where & i s  highly influenced 
by the  elevon se t t i ng .  

Elevon p i t ch  effectiveness.-  I n  f igure  7 values of A&/Atie versus 
angle of a t tack  a t  the  three Mach numbers a re  given. It i s  apparent t h a t  
elevon p i t ch  effect iveness  does not remain constant with changes i n  angle 
of a t tack ,  and opposite elevon def lect ions produce opposite changes i n  
magnitude of effect iveness  w i t h  a change i n  angle of a t tack .  
values of nC,/nS, 
than were obtained at  la rge  negative angles with equal but  opposite elevon 
settings. Also, with the  elevons def lected below the  wing ,  t he  def lect ion 
of both elevons was generally more than twice as ef fec t ive  as the  deflec- 
t i o n  of a s ingle  elevon. 

Greater 
w e r e  obtained a t  la rge  pos i t ive  angles of a t tack  

Dynamic Longitudinal Character is t ics  

Damping i n  pitch.-  S tab i l iz ing  damping i n  p i t ch  was  exhibited by 
the  model a t  a l l  Mach numbers and angles of a t t ack  ( f i g .  8 ) .  
value of damping decreased s l i g h t l y  as the Mach number increased. 

The mean 

The predicted r d u e s  were i n  good agreement w i t h  the  experimental 
r e s u l t s  a t  the  higher Mach numbers. The estimated values were obtained 

CONFIDENTIAL 



from references 6 and 7 by subtracting the  damping of the  notched aft  
sect ion from t h a t  of a t r iangular  wing having an aspect r a t i o  corrected 
f o r  the  drooped t i p .  

S t a t i c  Lateral-Directional Character is t ics  

S t a t i c  l a t e r a l  s t ab i l i t y . -  Values of the  e f fec t ive  dihedral  der ivat ive 
a re  given i n  f igure  l l ( b )  as incremental values of 
of s ides l ip  angle. A t  posi t ive angles of a t tack  the  model exhibited a 
posi t ive dihedral  e f f ec t  which became negative below approximately -1' 
angle of a t tack .  The vent ra l  f i n  contributed a small negative dihedral  
e f f ec t  a t  a l l  t es t  Mach numbers and angles of a t tack.  

C 2  fo r  a 5 O  increment 

Rudder effectiveness.- In figure l2(b) the data indicate that the 
rudder effect iveness  increases with increased angle of a t tack .  Nearly 
the same rudder e f f ec t  can be obtained from posi t ive elevon def lect ion,  
while negative elevon def lect ions a re  more than twice as ef fec t ive  as 
the  rudder (at negative angles of a t tack  only) i n  producing yawing moment. 
This cross-coupling e f f ec t  of the  elevons r e s u l t s ,  of course, from the  
elevons being located on the  def lected wing t i p s .  A cross-coupling 
e f f ec t  of the  rudder i s  a l s o  noted i n  f igure  l 2 ( a ) ;  namely t h a t  the 
rudder i s  capable of producing an appreciable r o l l i n g  moment. 

Elevon r o l l i n g  effectiveness.-  As  w a s  t rue  of elevon p i t ch  e f fec t ive-  
ness the  roll effectiveness changed with the  d i rec t ion  of t he  e l evon ,  
deflection. An elevon def lect ion below the  wing w a s  more e f fec t ive  i n  
producing roll than a def lect ion above the  wing when the  model was a t  
posi t ive angle of a t tack.  Elevon r o l l i n g  effectiveness f o r  elevon 
def lect ions above and below the  wing ( f i g .  12 (a ) )  appears t o  coincide 
a t  an angle of a t tack  which increases with increased Mach number. It 
should be noted t h a t  because the elevons a re  attached t o  the  drooped 
wing t i p s  and a c t  t o  some extent as rudders, attempts t o  roll the  a i r c r a f t  
by elevon def lect ion produce unusually la rge  yawing moments. 

S t a t i c  d i rec t iona l  s t ab i l i t y . -  Without t he  vent ra l  f i n ,  the  model 

The addi t ion 
possessed marginal or zero d i rec t iona l  s t a b i l i t y  a t  zero angle of a t tack,  
and w a s  unstable a t  posi t ive angles of a t tack  ( f i g .  13) .  
of the  vent ra l  f i n  t o  the  model provided d i rec t iona l  s t a b i l i t y  up t o  
approximately 3 O  angle of a t tack.  

The values of Cn i n  f igure  13 were obtained with the  dynamic P balance. Values of Cn derived from the  s t a t i c  balance data  i n  f igure 10 
( the model being at  6O ing le  of a t tack  only) 
those obtained with the dynamic balance. A t  zero and negative values 
of angle of a t tack ,  values of ACn/@ 

agree reasonably well  with 

from f igure  l l ( c )  a re  a l so  i n  
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good agreement with the  
qower Mach numbers. The differences between the  curves of f igures  13 
and l l ( c )  at pos i t ive  angles of a t tack  a r e  t raceable  t o  the  "S" shape 
of the  curves of The dynamic 
balance determines the  der ivat ive 
Cn vs. P i s  steep; whereas A%/@ is  based on an increment of Cn 
over a s ides l ip  angle range of 5 O  where the r a t e  of change of 
as grea t .  A t  the  higher Mach numbers the curvature of the  Cn vs. P 
curves i s  l e s s  and the  agreement between the curves of f igu res  13 and 
~ ( c )  improves. 

CnP values of f igure  13, p a r t i c u l a r l y  at the  

Cn vs. P (see f i g .  l O ( a )  f o r  example). 
Cng near P = 0 where the curve of 

Cn i s  not 

The estimated values shown i n  f igure  13 as broken l i n e s  a r e  the sum 
of the contr ibut ion from t he  fuselage (method of r e f .  8) and the drooped 
t i p s ,  assuming the Lat te r  t o  have two-dimensional cha rac t e r i s t i c s .  A t  
zero angle of a t tack  these predicted values were i n  good agreement with 
the experimental r e s u l t s .  

Dynamic Lateral-Directional Character is t ics  

Damping  i n  yaw.- S tab i l iz ing  damping i n  yaw was displayed by the 
model a t  a l l  Mach numbers and angles of a t t ack  ( f i g .  14). 
f i n  provided a nominal increase i n  the damping which varied between zero 
and approximately twice the estimated value. 
bution of the  body was obtained from equation (B2=) of reference 9, and 
a two-dimensional 1-ift-curve slope was assumed for the  drooped t i p s  and 
vent ra l  f i n .  The predicted values f o r  the model were i n  fair  agreement 
with the  experimental data  except fo r  the highest  angles of a t tack .  

The ven t r a l  

I n  t h i s  estimate the  con t r i -  

Rolling moment due t o  yawing velocity.-  The complete model exhibited 
negative values of 
a t tack  ( f ig .  15). 
w i t h  angle of a t tack  and Mach number. 

Czr - C 2 6  cos a a t  a l l  Mach numbers and angles of 
The contr ibut ion of the ven t r a l  f i n  var ied markedly 

Values of Czr - C 2 '  cos a 
drooped t i p s  and ven t r a l  f i n s  had two-dimensional l i f t - c u r v e  slopes were 
not i n  agreement wi.th the data. 

predicted on the  assumption t h a t  the  P 

Damping i n  rol.1.- S tab i l iz ing  damping i n  roll w a s  exhibi ted by the  
model at a l l  Mach numbers and angles of a t tack  ( f i g .  16) .  
f i n  generally had a small but  var iable  e f f e c t .  

The ven t r a l  

Predicted valu.es obtained from reference 6 (for the projected wing 
aspect r a t i o )  were i n  fair  agreement with the experimental r e s u l t s  a t  
zero angle of a t tack .  

C0NFIDENTIA.L 



Yawing moment due t o  r o l l i n g  velocity.-  Values of Cnp + Cni s i n  a 
were generally negative except a t  the  most negative angles of a t tack  a t  
the  lower Mach numbers ( f i g .  1 7 ) .  
decreased as the Mach number increased. The vent ra l  f i n  provided a 
negative contribution f o r  angles of a t tack  between -8' and do. 

The var ia t ions  with ,angle of a t tack  

The estimated values a t  zero and the  low negative angles of a t tack 
were i n  fa i r  agreement w i t h  the  experimental r e s u l t s .  Similar assumptions 
were made i n  predicting these values as i n  the  case f o r  C z r  - czp cos a. 

CONCLUSIONS 

A f l a t - t o p  wing-body configuration was t e s t ed  i n  a supersonic a i r  
stream. From a consideration of the  data, the following conclusions a re  
drawn: 

1. The model exhibited d i rec t iona l  i n s t a b i l i t y  a t  most posi t ive 
angles of a t tack .  

2. There were pronounced cross-coupling e f f e c t s  with e i t h e r  
elevon or rudder def lect ions upon the  l a t e r a l  and d i rec t iona l  s t a t i c  
s t a b i l i t y  of the  model. 
elevons a pure yawing moment can be obtained; however, with def lect ions 
of these same surfaces, a pure r o l l i n g  moment cannot be obtained. 

With proper def lect ions of the rudder and 

3. The damping der ivat ives  indicate  s t ab i l i z ing  damping of 
the  model a t  a l l  angles of a t tack  and Mach number. 

4. The approximate methods of estimating the  dynamic der ivat ives  
were only moderately successful and the  predicted values of r o l l i n g  
moment due t o  yawing ve loc i ty  were i n  poor agreement with the  experimental 
r e s u l t s .  

Arnes Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif., Dec. 10, 1959 
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